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ABSTRACT

\Qiarge-scale ocean slopes have continental-slope dimensions (e.g.,
slope.inclinations exceeding 1‘.£o£ relief of 2000 m). Approximately
40X are related to continental margins, 40% to features with oceanic
crust, and 20% to unknown origins or overlap with the first two groups.
Of the slopes, 75X are laterally continuous (lateral slopes), and the
remaining 25X form the sides of conical-shaped features.

Groupings and ranges have been established for the following lat-

eral slope parameters: ocean scction, top boundary province, bottom
boundary province, relifef, slope angle, surface-sediment grain size,
plate-tectonic association, shape, outcrop type in the upper 200 m,
percent of slope with outcrop, sediment thickness, and basement type.
Mapping and computer adaption of parameter compilations reveal global
data distributions, global averages, parameter relationships, and
applied classification methods. Global averages are 3.8° fér slope
angle, 3035 m for relief, and 38% for percent of slope with outcrop.
Strongest relationships occur wumong top boundary province, bottom
boundary province, plate-tectonrc association, and surface-sediment
type.

Preferred clustering of parameter relationships reveal four model
groups for lateral slopes. Group 1 centers around strong association of
broad shelves, rises, and divergent plate-tectonic association. Group
II includes high-relief slopes associated with subduction and high-angle
slopes associated with translation. Group III containc the slopes of
oceanic features and carbonate surface sediments. Group 1V, the

smallest group, includes outer trench walls.
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INTRODUCTION

Cbjectives

The motivation for this thesis is the absence of a comprehensive
evaluation of the shallow geology of large-scale ocean slopes. The
objective is to define the ranges, groupings and relationships of data
which describe morphology, sedimentation and shallow geological struc-
ture assoclaced with all ocean slopes having continental-slope dimen-
sions. This objective 1s achieved as follows:

1. Geometric criteria are defined.

2. Geographic slope areas are mapped.

3. Data are identified and evaluated to define groupings and

ranges. |

4. Selected data are shown on maps and graphs.

S. Interpretations and conclusions are formulated from the

compilations.
Background Studies

Large~scale ocean slopes include the vast majority of continental
slopes, the slopes of many intra-oceanic features (often of unknown
origin), most'slopes associated with island arcs, ocean volcanoes, and a
small proportion of the total extent of fracture 2ones amd ridge-crest
features. Although no available studies characterize the geology for

the total range of slopes, various studies explore specific aspects.
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The most comprehensive studies deal with continental slopes (e.g.,

Dietz, 1964; Emery, 1950, 1968, 1977, 1979; Lewis, 1974; Bouma, 1979;
Dickinson and Seely, 1979). These studies relate continental slopes to
continental margins and stress thc interplay of shelf, slope, and rise
in the evolutionary development of the margin. Such an approach gives
an overview of possible continental slope environments.

Descriptive elements of slopes were revealed in previous studies.
Dietz (1964) stressed the assoclation of slopes to the original tectonic
formation of a continental margin, to the sedimentary strata, and to
recent modification by erosion and deposition. Lewis (1974) implied
that slope shapes tend to be prograded when associated with large sedi-
ment input and/or narrow shelves. Emery (1979) presented a comprehen-
sive worldwide classification of continental margins based on an exten-
sive review of seismic profiles. It can be inferred from his study that
continental slopes are associated with tectonic origin of the margin,
tectonic and sedimentary dams, the intensity of recent sedimentation,
the 1influence of recent sedimentary processes, and the morphological
provinces which border the upper and lower boundaries of the slopes.

Dickinson and Seely (1979) presented evolutionary models for
geological features associated with subduction zones. These features
consist of fore-arc regions, outer trench slopes, back-arc slopes and
remnant arcs. They are associated with some of the most extreme slopes
in the oceans. The term “continental slope” was found to be ambiguous
in classifying these large-scale ocean slopes, because associated mar-
gins may or may not consist of true continental crust.

In their evolutionary models for intra-oceanic features, Carlson

and others (1980) pointed out additional ambiguities in the definition
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of continental slopes. Crusts of intra-oceanic features are continent-
al, oceanic, or unknown, and large-scale slopes often occupy the flanks
of these features. 1t is difficult to classify these slopes as conti-
nental slopes because intra-oceanic features are anomalously small as
compared to continents, their tops generally have little or no exposed
land, and their crust may not be continental.

Conical ocean features include seamounts, ocean islands, guyots and
atolls. Seamounts are submerged volcanoes; ocean islands are volcanoes
exposed above sea level; guyots are volcanoes once exposed and eroded to
the wave-base and later submerged; and atolls are volcanoes with reef
caps (Menard and Ladd, 1963). This established grouping is somewhat
irrelevant in classifying slopes because its basis concerns the nature
of the top of the feature. Nevertheless, some generalizations can be
made. The shallow structure of the slopes is dominated by the presence
of basaltic basement because slopes are the sides of volcanoes. Guyots
tend to have more abrupt boundaries between the upper slopes and top
provinces than do seamounts. Islands may contribute terrigenous sedi-
ments to the slopes; however, the amount is usually small. The carbonate
cap on atolls ranges from tens of meters up to 1400 meters for Eniwetok
(Menard, 1964), and the slope angle for the cap is usually very steep.
Also, reef carbonates are a source of slope sediment.

Other slopes underlain by oceanic crust are fracture zones, high
relief ridge crest features, and certain carbonate banks. These slopes
are not numerous and generally overlap with slopes of conical features.

It is apparent that slopes evolve from diverse origins and that
evolutionary classifications are too generalized to produce complete

descriptions. However, insight may be gained by use of descriptive
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associations of slopes to plate-tectonic origin, sedimentary history and
structural development. Consequen:ly, it is important to extract analy-

tic elements of studies so as to characterize slope regions.

Definition of Shallow Geology on Slopes

The shallow geology of slopes includes aspects of morphology,
sedimentation and tectonics associated with the upper 500 m of slope
materials beneath the slope surface. It 1s extemely complex because of
the vast range of geological enviionments, processes, and ages of rocks
and sediments. The types of available geological data are voluminous,
and selectivity is necessary to make realistic compilations. For this
reason, shallow geology in this study 1s biased to best represent a
primary motive, the characterization of slopes according to their
acoustic response. The following list outlines some guidelines:

1. The primary concern is to define morphology and material frou
the sediment-water interface to a depth of 200 m. less emphasis 1s
placed upon deeper material.

2. Definition of slope materials should correlate with acoustic
velocity data.

3. Data parameters must be adaptable to generalization for the
entire water-depth range of the slope and for a lateral slope length of
about 100 km.

A wide range of geological phenomena were explored. Data
concerning average slope angle, total relief, slope shapes, border

provinces, surface-sediment type, grain size and sedimentary processes

were compiled to define the acoustic interaction with the sediment-water
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interface. Sedimentary rocks, crystalline basement, and other high
velocity materials were identified as to their depth, frequency and rock
type. Certain sedimentary units such as diapirs or deformed sedimentary
rocks are identified and can be used to imply tectonic association.
Finally, plate-tectonic associations are identified to infer tectonic
influences on shallow slope materials. In other words, the shallow
geology presents a very generalized picture of the physical elements of
the slope enviromment and disregards much of the stratigraphy and
structural geology except where related to outstanding acoustic
response. This approach works well for characterizing the worldwide

extent of slopes because the necessary descriptive data are obtainable.

Selection of Large-Scale Ocean Slopes

Designation of slope areas 1s based upon geometric criteria of
average slope angle and relief. A large-scale ocean slope is defined as
an ocean bottom which has an average slope of at least 1° for a minimum
relief of 2000 m (Figure 1). Slope areas were mapped from unpublished
U.S. Naval Oceanographic Office (NAVOCEANQ) bathymetry maps of a scale
of 1"=1° longitude (see Map I for slope locations). As a first step,
contour spacings were examined to find steep areas exceeding 2000 m.
For areas with acceptable relief, average slopes were measured for their
steepest 2000 m relief range. If average slopes were found to exceed 1°
inclination, the area was designated as a large-scale ocean slope.
Finally, all sloping areas up-slope and down-slope to the 2000 m range

were measured to include all sections which met the slope criteria.




FIGURE 1.

Geometric classification of large—uc;le ocean slopeg. Slopes
that have average inclination of greater than 1° for 2000 m
relief were designated study areas. Lateral and conical

slopes were defined on the basis of the size of the top-of-

slope province.
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Map I depicts the geographic distribution of large-scale ocean
slopes which meet the slope criteria. The map establishes a geographic

base on which to compile geological data.

Lateral and Coaical Slopes

Visual inspection of the distribution of slopes (Map 1) reveals an
obvious discontinuity in their occurrence. Intra-oceanic areas contain
significant quantities of seamounts, islands, guyots, and atolls.
Because these features are approximately cone-shaped, slopes which form
their sides are designated cornical slopes. On the other hand, most
continental slopes and slopes associated with oceanic plateasus and
ridges extend laterally for great distances. These slopes are called
lateral slopes. As defined for this study, conical slopes have a
largest top-of-slope dimension of less than 100 km, and tops of lateral
slopes have larger dimensions (Figure 1). The division of conical and
lateral slopes is necessary for ithe following reasons:

1. As determined by lateral continuity, the geometries of conical
and lateral slopes are different. An analogy 18 comparison of a
mountain to a ridge.

2. The geometric divisiou between lateral and conical slopes
involves little overlap.

3. The geology of conical slopes (mostly volcanoes) is quite
different than that of lateral slopes (mostly continental margins).

4. Geologic and bathymetri: data concerning conical slopes are

much sparser than for lateral slopes.
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5. No reasonable method could be devised to include conical slopes
in a data base with lateral slopes.

The distances along slopes were measured to derive the quantity of
both conical and lateral slopes. Distances along lateral slopes were
measured parallel to the intermediate depth contour of the slope.
Measurement of conical slopes was more complicated. Conical features
were assumed to resemble true cones. Bracey (1981) measured randomly
selected basal sections of North Atlantic and North Pacific seamounts.
From his data, the average radius of a basal section was calculated for
a world average seamount. By using one~half this basal radius the
author calculated a circumference for a cone halfway between the apex
and the base. This average circumference was multiplied by the number
of conical features found in each ocean section (Table I, part a). The
resulting conical distances for each ocean section can be compared to
the lateral slope distances.

Table 1 shows the equivalent distances of lateral and conical
slopes for the total world oceans and by ocean sections (see Figure 2
for outlines of ocean sections). Lateral slopes generally outnumber
conical slopes by 3 to 1. Whereas the North Pacific has the highest
percentage of conical and combined slopes, the Indian Ocean has the
highest percentage of lateral slopes and second highest of combined
types. The South Pacific has the third highest percentage for each of
conical, lateral, and combined slopes. The remainder of the ocean

sections collectively have less than half the percentage for any slope

type.
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FIGURE 2.

Boundaries of ocean sections (see Parameter 1, Table II).
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COMPILATIONS OF LATERAL SLOPES

For this study, a compilation consists of a collective geologic
topic which characterizes all lateral slopes by various groupings which
best exhibit the topic's variation. A compilation involves formulation
of a collective topic, grouping of the topic, and finally assigning the
grouping scheme to the geographic extent of lateral elopes. Several
compilations were completed in this section, and their products are
world maps which depict various data groupings for geologic topics.
These are average slope, surface-sediment type, and plate-tectonic
associations of slopes. Other compilations were relegated to the data
base section for geographic representation and only the grouping schemes
are presented in this section. A third group of compilations consists
of those topics which are not suitable to worldwide mapping because of
the scale of study or the lack of worldwide data. These compilations
are presented as discussions and are omitted from the data base
sections.

Compilations are presented to characterize the geology of a thin
layer of material found on large-scale ocean slopes. They are grouped
according to morphology, surface sediments, and shallow structure.
Efforts were made to quantify groupings, to stress compilation of data
which relate to geometry of slopes, and to define physical properties of

geologic features.

— —— o




Morphology

Morphology is the geometry of the interface between the ocean bot~
tom and the water column. Several parameters were chosen to character-
ize morphology. Average slope angle and total relief define the numeri-
cal dimensions of slopes. With addition of a slope shape, the subtle
variations of slope angle and secondary topography become apparent.
Finally, definition of boundary provinces reveals the geometric rela-

tionship of the slope to its upper and lower extremities.

Average Slope Angle

Characterization of slopes by average slope angle requires a fixed
relief range. Shepard (1973) measured average slope angle for various
worldwide locations of continental slopes by fixing the relief at 1800 m
and disregarding the intermediate-relief topography. A similar method
was used in the present study; however, 2000 m relief was used and the
steepest sections of ocean slopes were measured. Average slope measure-
ments were compiled from NAVOCEANO bathymetry at a scale of 1" = 1°
longitude (cver 10 x the scale of Map 1I). Slope regions were outlined
at this scale by using the slope criteria.

Slope areas were grouped according to average slope-angle ranges
(Map 1). Measurement of slope angles was based upon contour spacings
which decrease exponentially with increasing slope angles. A logarith-

mic grouping is used: 1-2°, 2-4°, 4-8°, greater than 8°.
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Total Relief

Although average slope angle applies only to the steepest 2000 m,
total relief is a measure of the entire slope. Total relief values were
calculated by subtracting the shallowest depth from the deepest, and
data were tabulated in incremental 1000 m ranges. In general, the
higher-relief slopes have the greater chance of having steeper slopes

because a higher relief creates more 2000 m options.

Shapes of Slopes

Slope shape 1is a relative measure of the variability of slope
angles and secondary topography. Designation of shape geometries {is
highly subjective. The grouping scheme is defined using both relative
and quantitative criteria. Shape types (Figure 3) were developed
according to three major guidelines:

1. The shape types should reflect geological shape models proposed

in the 1literature.

2. A roughness (secondary topography) scale should be implemented
into the classification.

3. Individual shape types should characterize existing slope
shapes as determined by analysis of the profile compilation
(Appendix II).

The relative configurations and roughness groupings are illustrated in a
complete classification of shape slopes (Figure 3). The ranges used to
specify groups are absolute, ard any slope profile can be assigned to

only one group.




FIGURE 3. Slope shapes. The classification is based upon the relative

variability of slope angles and bottom roughness.
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Slope Shapes

Type
) Sigmoidal Smooth-
L Convex upper slope, no roughness >200m relre!
2 Sismoi
igmoidal Rough-

Convex upper slope, roughness 200-1000m
relief present.

3 Abrupt Smooth-

k Concave upper slope, no roughness >200m relief.

4 Abrupt Rough-
Concave upper slope, roughness 200-1000m
relief present.

5 Complex-

\/VL >1000m but €2000m relief of anomalous topography.
6

Step-
\__\—J Steps <2000m relief interupt a continuous slope

7 High Relief Step

Individual slopes with relief >2000m seperated
by flat intraslope region.

8 -~—-=- High Relief Complex
Individual siopes with relief >2000m seperated
by trough.
Scal
e KM
50 100 150
o I \
KM Vertical Exaggeration X 10
-
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Previous geologic studies pointed out elements of slope shapes
which prove useful in formulating a worldwide classification. Shape
models were proposed for prograding slopes (Sangree and others, 1978),
fore-arc slopes (Dickinson and 3Seely, 1979), and continental slopes
(Emery, 1979). All these models are highly qualitative; nevertheless,
some basic ideas were adopted. Shape types 1 and 2 (Figure 3) diffep
from types 3 and 4 in that the former have convex upper slopes and the
latter have concave shapes. Sangree and others (1978) suggested that a
convex shelf-slope break infers prograded sediment in a low-energy envi-
romment, and the concave break infers a high-energy environment. Convex
slopes were also implied by the occurrence of a trench-slope break for
simple fore-arc slopes (Dickinson and Seely, 1979). Similarly, the
convex shape characterizes many seamount shapes (Bracey, 1981) as well
as other slopes which have higher than average slope angles (Stanley,
1975). In a very diagrammatic representation of continental slopes,
Emery (1979) suggested that mature prograded slopes best resemble the
type 1 shape, whereas initial, youthful and truncated mature slopes
resemble types 2, 4 or 5. High-relief slope shapes often exhibit
multiple shapes (Types 7 and 8), and these shapes best resemble the
complex fore-arc slopes (Dickinson and Seely, 1979).

Characterization of bottom roughness was arbitrarily assigned to
the shape types (Figure 3). A scale of increasing relief of the maximum
bottom roughness correlates with the type sequence of 1 and 3 (lowest
roughness) to 2 and 4 (medium roughness) to 5 (highest roughness). Each
roughness grouping has definite relief intervals so that a shape can be
measured and categorized without ambiguity. Types 6-8 were not included

in the roughness scheme. Types 6 and 7 have step-like roughness with no




measurable relief. Types 7 ard 8 have highest roughness in that the
secondary topography reaches the dimensions of the primary shapes of

other slopes.

Boundary Provinces

Lateral slopes are elongate geographic areas which connect with
shoal areas at the top of the slope and deep areas at the bottom. The
geometric forms of the boundaries are flat or slightly inclined tops of
variable width, and a variety of bottom shapes such as depressions, flat
areas, or a gently inclined area. Terms which generally describe these
areas are shelf, ocean plateau, rise, trench, and trough. The list is
neither adequate to describe all types of boundary provinces, nor 1s it
totally geometric in its approach because sedimentary and tectonic proc-
esses are implied. For this reason, boundary provinces were defined ac-
cording to basic geometric form and genetic inferences were disregarded
except where specified.

Top boundary provinces were evaluated as to their size and depth.
Shelves were defined as the flat or gently inclined areas which
generally occur at depths of less than 300 m and connect with a land
mass. A narrow shelf was arbitrarily defined as less than 100 km wide
and a broad shelf as wider. This division crudely separates Pacific-~
type shelves from those 1in the Atlantic. Where a land mass 1s exposed
with no obvious shelf top, the top was designated as 1island/no shelf.
An ocean plateau resembles a shelf, but 1t may occur at any depth and 1s
not connected with a significan' land mass. An ocean plateau may occur
in intra-oceanic regions at very shallow depths or at a continental

margin at minimum depths of greater than 300 m. The shortest top
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dimension of an ocean plateau must exceed 100 km. If the top dimension
is less than 100 km, the no-top classification was assigned to the fea-
ture which is typically a seamount.

Bottom provinces were evaluated according to shape and slope
inclination. A rise connotes a sediment wedge; however, the definition

used here is a gently inclined slope at the base of the primary slope

province. Where slope bottoms into a flat province, the bottom province
was designated as a no-bottom classification. The final two bottoams,
trench and trough, are similar in that both are depressions. The defi-
nition of a trench 1is not purely geometric. All depressions associated
with obvious subduction zones were designated as trenches. Trenches
usually have steeper and higher-relief slopes associated with the sea-

ward side of the depression than troughs. Troughs are commonly found at

the base of oceanic features such as seamounts. All depreessions which
are not associated with subduction or former subduction zones were des-

ignated as troughs.

Surface Sediments

Analysis of sediment lying near the water-sediment interface on

slopes is complicated. Ideally, surface sediments represent Holocene

sedimentary regimes faor a particular geographic area. If sedimentation
rates are known, the thickness of the Holocene sediments can be calcu-
lated. In reality, slope sediments undergo a wide range of sedimentary

and tectonic processes such as wnass movement, faulting, and erosion.

Surface sediments may be absent because of erosion or nondeposition.
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Bottom surfaces may be basement >utcrop or surfaces of older sediments.
Surface sediments may vary in griin size and composition down slope.

An adequate representation of surface sediments 1is difficult to

compile considering the scale of this study. For the most part, surface

sediments should be Quaternary sediment. The compilation of surface

sediments (Map II) represents the average of variations with depth and

ignores the effects of local sedimentary processes. These topics are
inadequately studied worldwide and too variable over short distances to
be considered for worldwide compilations. However, they should never be

overlooked when evaluating a specific slope enviromment.

Average Type and Grain Size

The purpose of this compilation (Map II) is to standardize a world-
wide distribution of slope sediment data which can be adapted to a geo-
acoustic model. The sediment classification differentiates sediment
types which imply varying porosity and/or water content, in addition to
presenting the best available grain-size data. For the most part, sur-
face-sediment data were compiled from the geologic literature and many
aspects of the available data are unimportant for purposes of this
study. Extraction of needed data was often impossible. The compilation
used in this thesis leans heavily toward Soviet data because it is stan-
dardized and contains readily available bulk grain size and bilogenic
fraction of surface sediments (Lisitzin, 1972, 1975, 1975a) (Anonymous,
1975) (Kort, 1970, 1970a). Data from western scientists generally can-
not be standardized because of the varied classification schemes and

scientific purposes. Consequently, the Soviet data forms the basis of

L.__._ﬁ______________t
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the compilations and pertinent western studies were used to supplement
and check the Soviet base.

Major sediment types are terrigenous, bjiogenic, and nonbiogenic
pelagic sediments. Terrigenous sediments consist predominantly of ori-
ginally fluvial sediments; however, ice-rafted sediments are important
in polar regions, aeolian sediments in arid regions and volcanogenic
sediments near arcs (Lisitzin, 1972). Biogenic slope sediments are
dominantly pelagic, calcareous Foraminifera and nannoplankton. Ben-
thonic forams are common in lesser amounts and pteropods may occur in
warm climates at depths less than 3000 m. Siliceous sediments consist
of diatomaceous sediments in the high latitudes and radiolarian sedi-~
ments in the equatorial regions, but siliceous sediments are rarely the
dominant sediment on slopes. Pelagic nonbiogenic sediments generally
have a higher water content than terrigenous sediments. A fourth group
is transitional between the biogenic and nonbiogenic components (see Map
11 ).

It is difficult to formulate a standard grain-size grouping from
compiled data sources. Two major problems exist: correlation of grain
size distribution to mean grain size and correlation of the Soviet size
scale to the Wentworth-Udden scale used by western scientists.

Western studies generally describe grain size by a ternary diagram
which is a plot of grain-size distribution and a description term that
has quantitative boundaries (JOIDFS, 1977). Mean grain size may be cal-
culated from a detalled size analysis. Unfortunately the two results,
mean grain size and the descriptive term, cannot be accurately related.
The only way to overcome this problem is to compare the detailed analy-

sis of available studies, This is beyond the scope of thie thesis.

™
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The Soviets, more 8o than western scientists, have collected
worldwide sediment data and have published crude ranges of each major
size division (Figure 4). Like the western phi scale, the Soviets use a
log scale; however, the grouplngs arc different from the Wentworth-Udden
system. Lisitzin (1972) correlated the Soviet scale with western grain

size usage. He linked ranges of mean grain size to Soviet distribution

maps and correlated the mean grain sizes to western terminology. In
Figure 4, the sediment groupings of fine-medium silt, fine silt and clay
correspond to western mean grain-size studies in phi terms. Correlation
of distributions to the mean grain-size data can be accomplished only by :
assuming normal distributions and this occurrence is unlikely. On Map II1
the most accurate groupings (fine silt and clay) are derived from the
Soviet data. The fine to medium silt group is partially inferred from
western studies (Scholl and others, 1968, Frazer and others, 1972).

The groupings which delineate surface-sediment groups can be cor-
related to velocity-ratio data (Hamilton, 1980). By plotting Hamilton's

mean grain-size ranges for each sediment type, one can assign velocity

. et e e et g e 1ot

ratios to slope sediments (Figure 5).

Small-Scale Variation

The large-scale sedimentary regime for a slope region is dependent
upon regional sediment source and climate (Lisitzin, 1972). For
example, terrigenous input for glacial regions 18 generally coarse
grained and immature, whereas a tropical river may transport fine
grained clays. Also, sparsity of terrigenous source may gilve way to

biogenic sediments (Lisitzin, 1972). Such concepts are displayed by the

surface sediment compilation (Map 1II).




FIGURE 4.

Comparison of grain-size schemes. Western size scales (phi,
Udden-Wentworth) are compared to the Soviet scheme (pelite,
aleurite-pelite, and aleurite, Lisitzin, 1972), and to metric

scales.
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FIGURE 5. Velocity ratios for surfacc sediments. Velocity ratios are

deternined by surface-sedinent type and average grain size.

Adapted from Hamilton (1989).
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Numerous small-scale variations can radically alter the charac-
ter of the generalized surface sediments. Mass movement of sediment,
ubiquitous canyons and slope gullies, grain size and compositional vari-
ation down slope, and modification by bottom currents are recognized as
the most important sources of variation. These phenomena aleco influence
the character of bottom morphology and the outcrop of older structure on
slopes. The small scale of these phenomena places them beyond the scope
of this study. Slope environments are not mapped in sufficient detail
to reveal occurrence of all these variations. Consequently, it is
unrealistic to include their compilation. However, relationships are
recognized concerning the interaction of small-scale variation to other
slope parameters. For this reason, a brief summary is offered for each
ma jor phenomenon.

Mass movement of sediment on slopes 1is dependent upon volume of
sediment supply, strength of the sediment, "triggering” by tectonic
movement, oversteepening by erosion of deposition and probably numerous
undetermined sources (Morgenstern, 1967). Because a variety of factors
cause mass movement, the occurrence of slumps, turbidites, or various
other types of movement are difficult to evaluate. For example, whereas
slumping has occurred on slopes of 1°, sediment on slopes of up to 35°
may remain unmoved (Morgenstern, 1967).

Various types of mass movement have been studied (Lowe, 1979;
Nardin and others, 1979) and each type moves according to gravity and
momentum. As compared to movemen~ in other ocean regions, intra-slope
movement is dominated by collapse and down-slope movement of relatively
undeformed sedimentary units called slumps or glides. These sedimentary

features are a large source of slope roughness. They are characterized
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by steep up~slope "scars” (which resemble escarpments in cross-section)
and down-slope knolls or talus piles which often have rotated but intact
bedding (Nardin and others, 1979).

Deposits caused by sediment flows are algo important. Their place-
ment, however, 1s generally at the base of slopes or behind dam struc-
tures. Sediment flows can range from debris flows to turbidites (Nardin
and others, 1979) and they often result from initial slide processes.
Turbidites are most common on the floor of submarine canyons and on
rises. They result from slumping on 1intra-slope reglons, erosional
slunping of canyon wallg, or introduction of sediments at the canyon
head (Shepard and Dill, 1965).

Submarine canyons and slope gullies are common on slopes. They
form indentations of variable width, length and depth, and are a prime
source of bottom roughness. Various hypotheses attribute their origin
to eroslonal processes related to river sources or submarine sediment
slumping and turbidity currents (Shepard and Dill, 1966). They have
steep walls which often cut into the older structure of the slopes. Off
the east coast of the United States, most submarine canyon walls are
truncated sedimentary strata, whereas off the California coast, canyons
cut into crystalline rocks (Shepard and Dill, 1966). Canyons are recog-~
nized as both active (with erosional walls and floored by turbidites)
and 1nactive (covered by a layer of recent pelagic or hemipelagic
sed iment) (Shepard, 1981).

Major down-slope variations in sediment composition and grain size
are caused by distance from terrigenous source, lack of certain biogenic
production below photic zone depths, and dissolution of carbonate secdi-

ments below the carbonate compensation depth (CCD). Grain size generally
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decreases with depth for both carbonate and terrigenous sediments and
carbonate sediments dissolve below the CCD. However, the variations may
be overidden by mass movement processes and bottom currents.

A simplistic view of terrigenous sediment on continental margins
includes a sandy shelf, a silty slope and a clayey rise. The decrease
in grain size 1is attributable to distance from terrigenous sources
(Bouma, 1979). The same trend exists across slope regions where upper
slopes have coarser muds than lower slopes. Macllvaine and Ross (1979),
for the New England slope; Krissek and others (1980), for the Peru
slope; and Murdma and Bezrukov (1970), for the Southern Kurile fore-~arc
region; found somewhat linear decreases in grain size of terrigenous
sediments with depth on slopes. On the other hand, Doyle and others
(1979) and Keller and others (1979) found no variation for silty clays
recovered from the slope off the northeastern United States; however,
ad jacent shelf and rise sediments were found to be coarser and finer,
respectively.

Carbonate sediments on slopes show similar down-slope trends for
different reasons. Except for the mass movement of sediments and occa-
sional shelf spillover, the predominant carbonate slope sediment is pel-
aglc Foraminifera and nannoplankton (Moore and others, 1976; Scoffin and
others, 1980; Mullins and Neuman, 1979: Schlager and Chermak, 1979).
Average grain size of pelagic carbonates decreases linearly from about
0.03 mm at 1600 m to less than 0.004 mm at 4000 m for sediments on the
gently inclined Ontong-Java Plat=au (Johnson and others, 1977). This
trend coincides with a slight decrease in carbonate content. The
decrease in grain size evidently resulted from breakdown or dissolution

of pelagic tests.
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Carbonate surface sediments are absent below the CCD (Figure 6,
Berger and Winter, 1974). Sediments on the basal sections of slopes
below the CCD will have sediment compositions which reflect sources
other than those of pelagic carbunates. For example, equatorial reglons
may have significant quantities of basal radiolaria and high latitude
slopes may have diatoms. Other areas may have hemipelagic sediments.
In the absence of any significant sediment source, red clay may be the
ma jor surface sediment at the base of the slope.

Subduction processes may greatly alter the character of sediments
at the base of fore-arc slopes. 1In studying surface sediments from the
Oregon-Washington slope, Carson (1977) found overconsolidated and
dewatered sediments at the base of the slope and underconsolidated
sediments on upper slopes. He attributed tectonism due to subduction as
the cause of the anomalous basal sediments. If similar occurrences
exist for other fore-arc regions, it can be expected that subduction
cooplexes (Karig, 1977) will have anomalous sediment properties.

Modification of sediments by bottom currents may be an important
but variable influence upon surface sediment on slopes. Paths of bottom
currents are often unknown worldwide, but they are suggested by sediment
drifts near the base of slopes and scouring of slope walls, especially
for intra-oceanic features and constricted areas. Off the southeastern
coast of the United States, the Gulf Stream scours the slope wall off
the Blake Plateau (Emery and Uchupi, 1972). Bottom currents do not play
a major role in sedimentation for slopes off the northeastern United
States (Doyle and others, 1979).

Internal waves are suggested as another modifying source for slope

sediments (Bouma, 1979), but their effect is unsubstantiated. It is
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FIGURE 6. Depth of the Calcium Carbonate Compensation Surface. Adapted

from Berger and Winterer (1974).
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suggested that deposition occurs downslope and just upslope of the

breaking point. Erosion occurs further upslope.

Plate~-Tectonic Association

A classification of slopes was implemented to indicate ongoing and
initial tectonic processes associated with plate tectonic theory (Map
IIT1). Problems arising in formulating such a map include the lack of
definitive data worldwide and the lack of rigid groupings which totally
characterize one region as opposed to another. Consequently, speculation
and a priority scheme were implemented into the classification. The pri-
mary purpose of the map is to classify all lateral slopes as a distinc-
tive tectonic class so that the tectonic class can be contrasted with
other slope characteristice. Many ambiguities arise in defending the
scheme because slope: were implied to be associated with tectonic situa-
tions. Actually, slope characteristics may or may not be related to the
tectonic situation.

The major division in the classification scheme 1is the separation
of active and passive plate margins (Figure 7). Active-associated slopes
are slopes in Cenozoic-Mesozoic megasuture belts of the world where sub-
duction and translation are occurring (Anonymous, 1979). These regions
are characterized by mountain building, volcanisw, and anomalous heat
flow. Areas outslde the megasuture zones are not plate margins. A dif-
ferent scheme was used to classify slopes outside megasuture zones.
Such slopes include many slopes in ocean basins as well as those ad ja-
cent to continents. An arbitrary division was made to divide these two

ma jor types of features. Although the division 1is not tectonically
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motivated, it avoids the problem of the origin of irtra-oceanic fea-
tures. Figure 7 outlines the tectonic classification utilized on Map
IIIL. The classification separates slopes according to their local

association with current plate tectonic activity. Major data sources

for this compilation are: Anonymous (1979), Emery (1979), Dickinson and
Seely (1979) and many papers listed in Appendix I.

Slopes in megasutures were first classified according to thelr
association to present plate movement (Anonymous, 197%3). Slopes asso-
cilated with subduction are fore-arc regions, outer trench walls and
back-arc walls. Slopes associated with translation occur near active
strike-slip movement. 1In the past, many of these slopes were assoclated
with subduction (e.g., western Aleutians, Puerto Rican fore-arc region,
Burdwood Bank). Many slopes 1in megasutures are not associated with
presently-active plate boundaries. Such slopes are the apparent passive
slopes of small basins and remnant arcs.

Slopes located outside mega-sutures were divided into intra-oceanic
features and rifted continental margins. Rifted continental margins

have either translational or divergent origin.

Shallow Structure

Structure in the Top 200 m

Profiles shown in Appendix 11 were examined to characterize the
types of outcrop found in the upper 200 m of slopes. An outcrop is
defined as an acoustic horizon 1in the upper 200 m which indicates a
sharp rise in acoustic velocity as compared to overlying or adjacent

reflections. In geological terms, an outcrop usually represents
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FIGURE 7. Plate-tectonic association of slopes. This classification
scheme distinguishes slopes associated with active plate

movement from those with passive association.
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crystalline or lithified rocks which lie unconformably beneath prograded
sediments or are exposed on a slope. The nature of the outcrop is
evaluated from papers listed in the bibliographies (Appendix 1) and the
profiles.

Outcrops were identified as geological rock units, and the percent-
age of the slope with outcrop was measured. Major sedimentary outcrops
are deformed sedimentary rocks, truncated sedimentary rocks, diapirs and
reefs. Crystalline outcrops are both continental and oceanic rocks.
Acoustic basement refers to nondetermined high impedance outcrops. The
extent and type of outcrop were determined from profiles in Appendix II.
For the most part, only one outcrop was identified for a single profile.
However, oceanic crystalline basement often occurred simultaneously with
deformed or truncated sedimentary rocks. The extent of each outcrop was
noted in terms of percent of the total vertical axis.

Outcrop types have significant geological implications. The
presence of older structure near the surface of a slope indicates the
presence of unconformities, nondeposition or tectonism. The prograded
outcrop type indicates the absence of a significant near-surface out-
crop. Because minor unconformities are likely to be present on all
profiles, they were overlooked. Deformed sedimentary rocks (and sedi-
ment) compose what i{s referred to as a subduction complex (Karig and
Sharman, 1975). Truncated sedimentary rocks (and sediment) represent
exposed angular unconformities. Truncated units may be escarpments and
indicate current scour, tectonism, or extreme mass movement of sediment
(Emery, 1979; Shepard and Dill, 1966). Diapirs and reefs often form
sedimentary dams. For example, the lower slope of the Northern Gulf of

Mexico 1s formed by a salt wall called the Sigsbee Escarpment.
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Similarly, the Blake~Bahama Escarpment 1is a reefal dam (Emery and
Uchupi, 1972).

Various types of basement outcrops were classified. Artoustic base-
ment 1s an unidentified acoustic horizon which is the deepest horizon
observed on a seismic profile. Oceanic basement is either basinal crust
or pinnacle (oceanic volcanoes) structures normally situated at the base
of a slope. Pinnacle structures are often associated with trunucated or
derormed sedimentary rock outcrops. Continental basement normally occurs

as a massive block which might underlie the total slope.

Total Sediment Thickness

Sediment thickness 1is a measure of the thickness of sediment and
sedlmentary rock to a chosen basement datum. Measurement of sediment
thickness on slopes is very difficult for the following reasons:

1. Basement is rarely identified on seismic profiles.

2. Thickness is highly variable.

3. The slope is often near the boundary between continental and

oceanic type crust.

4, Selsmic profiling across sloping bottoms is highly distorted by
vertical exaggeration and complex geology. Appearance of struc-
ture is often ambiguous.

Sediment thickness was measurable for only half the profiles in

Appendix II. Deepest observed basement datums are acoustic basement,

crystalline basement, diapirs, and reefs.
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DATA BASE FOR LATERAL SLOPES

The data base consists of a tabulation of slope parameters in
computer-compatible format. Grouping 1s predominantly subjective; slope
areas are divided into equally-spaced stations.

Thirteen parameters were formulated from the slope compilations
{Tables 11 and III). Each parameter represents a geologic compilation
for all lateral slopes. The variation within each parameter is represen-
ted by a group of parameter classes. For example, surface sediment type
is a parameter. Its parameter classes are terrigenous, 30-50% carbonate,
greater than 50% carbonate, greater than 50% carbonate and biogenic sil-
ica, and pelagic clay.

Parameters were evaluated using either of two spacial schemes. For
parameters 1-8 (Table II) the lengths of all lateral slopes were divided
into 3125 equally spaced 100 km stations, and parameter class designa-
tions were assigned to each station. On the other hand, parameters 9-13
(Table II1) were tabulated from 520 profiles (Appendix II) and parameter
class designations were assigned to stations which coincide with profile
locations (Map IV). Although only 177% of all stations have coincident
profiles, an attempt was made to use only those profiles which are
spacially representative of all lateral slope areas. Only one profile
could ve included for a single station. The dual nature of spacial
tabulation of data was treated as follows:

1, Stations with no profiles were evaluated for parameters 1-8

(Table II).
2, Stations which include profiles were evaluated for parameters

1-13 (Tables II and III).




TABLE 11, PARAMETERS 1-8
TABULATED PARAMETERS FOR 3125 EQUALLY SPACED 100 KM STATIONS

PARAMETER PARAMETER CLASS CARD £ OF TOTAL
DESIGNAT ION®*
1, Ocean Section® indlan 1 26
North Pacltic 2 22
South Pacitic 3 19
North Atlantic 4 1"
South Atlantic 5 9
Madit, and Black Seas 6 3
Arctic 7 4
Antarctic 8 6
2, Top Boundary Shel ¢ (>100 km) ! 27
Province Shel t (<100 km) 2 22
Istand 3 17
Ocean Plateau 4 20
No-Top Classlification 5 14
3, Bottom Boundary Rlse ) 34
Province Trench 2 18
Trough 3 11
No-Bottom Classlfication 4 27
4, Relief 2000 m 1 17
2001=3000 m 2 44
3001-4000 m 3 33
4001~5000 m 4
5001-6000 m 5 13
6001=-7000 m 6
7001-8000 m 7
8001-9000 m 8
9001-10000 m 9
5. Slope Angle 1-2° 1 24
2-4° 2 n
4-g° 3 35
>8° 4 1
6, Surface Sediment Terrigenous 1 38
Type 30~508% Carbonate 2 22
>508 Carbonate 3 34
>50% Carbonate and Blogenlc 4 4
Sitica
Pelagic Clay 5 3
7. Surtace-SedIiment No data 0 4
Grain Size Sttt ! 13
Fine Sitt 2
Ciay 3 4
8, Piate~Tectonic Compilex Forearc Reglon* ! 1
Assoclation Simple Forearc Reglon 2 8
Quter Trench wall 3 3
Backarc wall 4 2
Remnant Arc 5 !
Active Transiation 6 7
Apparent Passlive 7 1)
Intr a-oceanic 8 22
Psssive Divergent 9 28 o
Passive Translation 10 7

* see Figure 2 for boundarles
##% sq0 Figure 9
t+ detined by Dickinson and Seely (1979)




TABLE 1!1, PARAMETERS 9-13
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TABULATED PARAMETERS FOR 520 SUBLISHED SEISMIC AND BATHYMETRIC PROFILES*

PARAMETER

9., Shape

10, Outcrop Type In
the Upper 200 m

11, Outcrop Percent

12, Sediment Thickness

13, Basement Type

PARAMETER CLASS

Sigmoida! Smooth
Sigmoldal Rough
Abrupt Smooth
Complex

Step

High=Rel lef Step
High=Re!lef Comp!ax
Abrupt Rough

Not Determ!ned

No Outcrop (prograded Sed,)

Truncated Sed., ani Sed, Rocks

Dlapirs

Deformed Sed, and Sed, Rocks

Reef

Acoustic Basement

Crystalline Block

Crystal line Plnnacles

Crystalline Plnnacles and
Truncated Sed./Sed. Rocks

Crystaj tine Pinnacles and
Deformed Sed./Sed, Rocks

0%

1-9%
10-19%
20-29%
30-39%
40~49%
50-59%
60-69%
70-79%
80-89%
90-100%
Not Determined

Not Determined
0-200 m
200-400 m
400-800 m

1000~2000 m
>2000 m
500-1000 m
>1000 m

400~-1000 m (inclusive)
>1000 m (Inclusive)

Not Determined

Diaplrs

Reef

Acoustic Basemen*

Crystal line

Dlapirs and Acoustic Basement

* see Appendix || tor Profiles
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Any single slope station was characterized by a maximum of thirteen

parameter-class designations.

Duata Forumat

Computer punch cards were used to record tabulated data. Each card
contains data for one station. Punched data include the station number,
the profile number (if a profile 1s present), and the parameter-class
designations. Figure 8 illustrates the card format for a station with a

corresponding profile. A total of 3125 cards comprise the data base.

Problems with the Data Base

When judging the quality of data base findings and uses, the reader
should keep in mind several unresolved problems.

1. Only lateral slopes are evaluated in the data base; conical
slopes are not.

2. Two spacial schemes (stations and profiles) with unequal cover-
age are combined to offer representative sampling of lateral slopes.

3. Chosen parameters are assumed to represent valid slope charac-
teristics. Many other parameters which characterize slopes had to be
omitted because no practical application to the data base could be
realized.

4. The grouping of many parameters 1s subjective. Although exist-
ing geologic terminology determines some parameter classes, others were

defined by the author on the basis of inspection of the total range




FIGURE 8.

Computer card format for recording datas for a single station
on one punched card. Most tabulations are parameter class
card designations listed on Tables Il and II1I. An index to
station locations is available on request. Card designations
of ocean section for profiles are: O for no profile, 1 for
Arctic, 2 for Antarctic, 3 for Mediterranean and Black Seas,
4 for East Atlantic, 5 for West Atlantic, 6 for East Pacific,
7 for West Pacific, aad 8 for Indian. Ocean boundaries for

profiles and profile numbers are shown on Map 1IV.

The station tabulated on the figure is for Antarctic profile
17. The card designations indicate that the station is char-
acterized by a broad shelf at its top, a rise at its base,
reltef of 200-3000 m, slope of 2-4°, fine silt-size terrig-
enous surface sediment, 8 passive translation tectonic asso-
ciation, a sigmoidal smooth shape, no outcrop in the upper
200 m, and sediment thickness of 500-~1000 m to acoustic

basement.
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of compilations. "Natural” grouping of slope characteristics is usually
unknown and impossible.

5. Great disparity exists in the quality and coverage of tabulated
data. Best data are for the Norith Atlantic and North Pacific, poorest
data for the Arctic and Antarctic. Data composing the surface-sediment
size compilation are unreliable and often impossible to standardize.
Only 50% of profiles (Appendix 1II) reveal definitive total sediment
thickness and deepest observed basement, 60 reveal outcrop frequency

and 827% reveal outcrop type.
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DATA BASE ANALYSIS

Analyses are based upon computer counting and sorting of slope tta-
tions and corresponding data distributions. Various data presentations
were constructed to define data distributions, to reveal relationships
among parameters, and to group parameters. Order of presentation is cum-

ulative in that later analyses in this section incorporate earlier ones.

Global Data Distribution

A distribution is the frequency of all parameter classes for a
group of stations. Distributions were formed by sorting occurrences of
parameter classes for all stations and counting the number of stations
assigned to each parameter class. Because the sum of parameter classes
for a single parameter always equals the global number of stations, fre-
quencies of parameter classes were represeanted by percentages.

The global distribution of parameter classes represents all lateral
slopes (Tables II and 1II). The distribution reveals the occurrence of
a variety of geological phenomena related to the world as a whole. For
example, the global distribution for slope surface-sediment type is 387
terrigenous, 227 carbonate (30-50% CaCO3), 38% biogenic (>50% CaCOj
and $103), and 3% pelagic clay.

Plate I shows the global distribution of all combinations of twn
parameter classes. Each single matrix for two parameters represents 100%
of all lateral slopes. Precise percentages are listed for the most fre-
quent combinations on Table IV, and these combinations are dominantly

representative of top province, bottom province, plate-tectonic associa-

tion and surface-sediment type.
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Numerical Scale Parameters

Four parameters chosen for the data base consist of parameter-class
divisions which can be treated a- numerical scales. These parameters
are average slope, relief, gurface-sediment grain size and outcrop per-
centage. The presence of numerical scales opens a new dimension to data
analysis. First of all, the parameter-class distributions might be eval-
uated as to their suitability foir statistical analysis. For the most
part, the sampling techniques used in this study are not precise enough
to warrant formal statistical analysis. 1In all cases, data were grouped
into ranges and averaged values were assigned to discrete parameter
classes. Because Chi square aaalyses of distributions always fall far
below acceptable levels for normal distribution, it is important not to
take the data beyond statistical limits.

Correlation coefficients (r) for combinations of numerical scale
parameters reveal significant positive correlation at the .05 level for
slope and relief, slope and outcrop frequency, and outcrop frequency and
sediment size (Figure 9). These correlations are very weak, and signifi-
cance of correlation is attributed to the large size of the populations.
The predictibility of one parameter from another correlated parameter is
similarly weak for all correlations. For example, the best~fit linear
regression equation for the strongest correlation (slope and relief)
accurately characterizes only 18% (rz) of all possible predictions.
The weakness of the correlations is attributed to the natural scatter of
the data as well as the sampling 1ethod of using ranges of data rather
than discrete values. Nevertheless, significant correlations do exist

and their presence warrants further geological investigation.
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TABLE 1V, MOST FREQUENT CQABINATIONS OF TWO PARAMETER CLASSES®

% OF TOTAL LATERAL

SLOPE POPULATION PARAMETER CLASS COMB)NATIONS
23 Broad Shelt Rise
20 Ri se Passlve Divergent
19 No-Bottom Class, intr a-ocean ic
18 Tarr igenous Deformed Sed,/Sed. Rks
18 Rise Sigmoidal Rough
17 Ocean Plateau Intra-oceanic
16 Forearc Reglon Detormed Sad,/Sed, Rks
16 Broad Shel ¢ Terrigenous
16 >50% Blogenic intra-oceanic
16 Trench Forearc Reglon
15 indtan >50% Blogen ic
14 Trench Forearc Reglon
14 Trench Deformed Sed,/Sed, Rks
14 Terrigenous Sigmoida! Rough
13 Rise Truncated Sed./Sed. Rks
12 Terrigenous Passive Dlvergent
12 North Pacific Terr | genous
12 Ocean Piateau >50% Blogenlc
12 Broad Shelf Stgmoldal Smooth
12 Broad Shel f No Outcrop
- 12 Broad Shelt Truncated Sed,/Sed. Rks
12 Rise No Qutcrop
1" fndlan No Bottom Class,
1 Terr igenous forearc Region
1 Passlve Divergent Truncated Sed./Sed. Rks
10 Indian Ocean Plateau
19 indlan Rise
10 South Paclitlic >508 Blogenic
10 Narrow Shelt Terr igenous
10 Rise Terrigenous
10 Rlse Sigmoidal Smooth
10 Rise No Outcrop
10 >50% Blogenic Passive Divergent
10 Passive Divergent Sigmoidai Smooth
10 Passive Divergent Sigmoidal Rough
10 Passive Divergent No Qutcrop
10 Passlve Divergent Truncated Sed./Sed, Rks

*tor Parameters 1-3, 6, 8~10 (Tabies || and 111)
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FIGURE 9. Correlation coefficients for numerical scale parameters.
Significant correlations at the .05 level occur for slope and
relief, outcrop frequency and slope, and outcrop frequency

and sediment size.
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Slope-Relief Index

Mean slope and relief values were calculated for all parameter
class subpopulations and are listel on Plate 1. (A parameter-class sub-
population is a group of all the stations which exhibit a specific pa-
rameter—~class designation.) The mean values of each gubpopulation were
plotted on a graph with axes of slope and relief. Most subpopulations
reflect the positive correlation between slope and relief, and mean
values plotted close to the regression curves indicated on Figure 10.
Subpopulation means were compared to the means for the total population
of lateral slopes, and the resulting comparisons were the basis for de~
fining the slope-relief index.

Figure 10 illustrates the constraints and derivation of the slope-
relief 1index. Arbitrary boundaries for designation of indices were
formulated as follows:

l. The average slope-relief values were plotted for all subpopula-
tions and the total slope population.

2. A small but arbitrary range around the global means was assigned
to designate normal slope-relief indices. The small range was chosen to
include only a small number of subpopulation means.

3. Crude regression curves were drawn based upon the average values
for the total slope and relief ranges of discrete groupings. Two curves
resulted: one for x/y and one for y/x. It is assumed that mean values
for subpopulations which plot near these curves indicate the positive
correlation between sglope and relief. Therefore, small windows were

arbitrar{ly assigned using the regression curves as boundaries for

extreme values and the normal range for values near the global means.

High slope, high relief designations are enclosed to the right of the
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FIGURE 10.

Correlation graph of slope and relief. See text for

explanation of slope-relief index.
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normal designation, and low slope, low relief designations are to the
left.

4. Subpopulations which have mean values outside the correlation
window have anomalous influence by either slope or relfef. Such subpopu-
lations are designated as low slope, high slope, low relief or high
relief.

5. Parameter class subpopulations are listed in Table V and in
Plate Il according to their assigned slope-relief indices. The index is
useful in determining variation of both slope and relief in relation to

a third parameter.

Parameter Sequence by Slope-relief Means

Slope and relief means for subpopulations offer clues as to the
nature of parameter grouping. It was discovered that parameter-class
subpopulations which make up a single parameter often plot in distinc-
tive trends on slope-relief axes. Shape parameter class subpopulations
plot in a linear sequence which represents the positive correlation
between slope and relief. The mean values established a sequential
order for the shape groupings. This order ranges from low slope, low
relief to high slope, high relief, and groupings are listed as follows:

SHAPE PARAMETER CLASSES
sigmoidal smooth increasing slope-relief
step
sigmoidal rough
complex
abrupt smooth
abrupt rough
high relief

The positive correlation of slope and relief is well reflected in group-

ing of three parameters: shape, top province, and active elements of
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plate-tectonic association. On the the other hand, certain parameters
have ordered parameter classes which reflect variation with slope only.
These parameters are bottom province, passive elements of plate-tectonic
association, and outcrop type. Surface-sediment size has obvious se-
quence due to variation with relief only. Surface-sediment type group-
ings plot well with normal ranges and show little variation with slope
and relief. In summary, the basis for grouping was found to correlate
with five arrangements of slope and relief:

1. both slope and relief in a positive linear trend
2. only slope, no varlation with relief

3. only relief, no variation with slope

4. no variation with slope or relief

5. random variation with slope and relief.

Table VI shows sequence of selected parameters.

Variation Matrix

The variation matrix (Plate II) illustrates the results of several

studies of parameter-class subpopulations. It shows the relationships

that each subpopulation has with all other data parameters. Relation-

ships are defined by relative and absolute assoclations.

Relative Assoclations

When a subpopulation and the global population have equivalent data
distributions, the subpopulation is representative of the global popula-
tion. More likely, however, the distributions will be different. Figure

11 {llustrates the comparison of the North Atlantic subpopulation to the




TABLE V), PARAMETER SEQUENCE BY SLOPE-RELIEF MEANS

Slope-rel lef Dependence
TOP PROVINCE

LS,

LR Broad Sheif
Ocean Piateau
No Top Class,

Narrow Shelt

HS, Istand
R

Slope Dependence

BOTTOM PROVINCE

LS Rise
No Bottom Class,

Trench
Trough
HS

SHAPE

Sigmoidal Smooth
Step

Sigmoidai Rough
Comp t ex

Abrupt Smooth
Abrupt Rough
High Rellef

OUTCROP TYPE

ACTIVE PLATE ASSOCIATION

Quter Trench wall
Remnant Arc

Actlive Transiation
Backarc Waill

Forearc Reglon

PASS IVE PLATE ASSOCIATION

Diapirs

No Outcrop
Truncated Sed,
Acoustic Bsm
Crystal tlne Bk,
Reef

Passive Transiation
Passive Divergent

Apparent Passive
Intra-oceanic

LS (low slope), LR (low rellet), HS (high siope), HR (high relieft)
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global population for top and bottom province parameters. Obvious dis-
tribution differences are that MNorth Atlantic slopes have higher fre-
quencies of broad shelf, rise, and troughs, and lower frequencies of the
remaining parameter class designations. It can be inferred that the
North Atlantic has positive associations with higher frequency parameter
classes and negative associations with those of lower frequency.

Based upon inspection of distributions of all parameter class sub-
populations as compared to the global population, an arbitrary variation
scheme was devised to assure a standard definition of positive and nega~

tive associations. Where the frequency of a subpopulation designation

exceeds 50% of the same designation for the global population, the sub-
population has a significant positive association with that parameter
class designation. For example, Figure 11 shows that the broad shelf
designation for the North Atlantic exceeds 50% of the same designation
for the global population. (The 50% 1limit is noted by line A, Figure
11.) Conversely, where the percentage 1is 50% less than the global fre-
quency, the subpopulation has a significant negative association (see
line B, Figure 11A). A neutral association falls between in the 50-150%
range. In summary, North Atlantic slopes have positive assoclations with
broad shelves and rises, negative association with ocean plateaus, the
no-top classification, and trenches and neutral associations with the
remaining parameter class designations. Figure 11B shows the format for

depicting associations on Plate II.

Absolute Associations

Absolute associations are a measure of extreme parameter- class

percentages within a subpopulation. If an individual parameter-class




FIGURE 11.

Comparison of North Atlantic elopes with global slopes.
Comparison 18 shown for top and bottom provinces.

A. Derivation of relative and absclute associations.
B. Representation of associations for the Variation

Matrix (Plate 11).
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desfgnation represents 0% or greater than 50% of the total subpopula-

tion, the occurrence is noted on Flate II by O's and X's, respectively.

The cut-off percentages enable the following statements to be made:

1. No stations o: tne subpupulation exhibit a certain parameter

class designatiorn.
2. The majority of the subpopulation stations exhibit a specific
parameter-class designation.
On Plate II, absolute assoclations refer to parameter-class subpopula-

tions listed on the B axis.

Supplemental Information

The following supplemental information 1is shown on Plate 11 for
each parameter-class subpopulation:

1. the percent of the total lateral slope population which belongs
to each subpopulation

2. a percent ratio of the number of profiles/number of stations to
determine how representative the profile data base 1is

3. the slope~relief index

4. the difference of mean slope from the global mean of 3.8°

5. the difference of mean relief from the global mean of 3.04 km

6. the difference of mean outcrop percent from the global mean of

38%.

Interpretation

The variation matrix enables the formulation of a step-wise evalua-

tion for each parameter-class subpopulation. Procedures for each evalua-

tion are similar. Each subpopulation has a listing of positive, necutral,
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and negative associations which reveal 1ts relationships with other

parameters. The listing for the North Atlantic follows:

Positive Neutral Negative
broad shelf narrow shelf diapiric ocean
outcrop plateau
rise trough island no top class.
active translation all surface no bottom fore-arc
sediment types class region
abrupt rough back-arc remnant arc intra-~
oceanic .
i
step sigmoidal rough sigmoidal crystalline 5
smooth outcrop
truncated sed. abrupt rough complex acoustic
basement
reef prograded trench

(no outcrop)

Absolute Associations

X 0
broad shelf none

rise
passive divergent

The listing provides a source to characterize the slopes of the North

Atlantic. The positive associations reveal the characteristics which e
occur more frequently in the North Atlantic than in the world as a
whole. The negative assoclations reveal the opposite. Neutral associa-
tions indicate similarities to the world as a whole. On the basis of
absolute associfatlons, 1t can be stated that the majority of North

Atlantic slopes have broad shelves, rises and passive divergent tectonic

association.
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An 1interpretation of the North Atlantic association 18 offered.
Top provinces are dominated by broad shelves. Ocean plateau and no top
classification are less frequent than the world average. Passive diver-
gent and active translation are nreferred plate tectonic assoclations.
Rises dominate as the bottom province largely due to absence of

trenches. All surface sediment types are well represented. All shapes

are represented but abrupt rough and step types are more common than the
world average. Preference of outcrop type 1s for truncated sedimentary
rocks at the expense of crystalline and acoustic basement. Slope angle,
relief and outcrop percent are all similar to world averages.

The North Atlantic shows most variation for boundary provinces and
tectonic assoclation. Conversely, it shows conformity to global averages
for surface sediment type, slope angle, relief and outcrop percent.

North Atlantic associations are very different from those of the
South Pacific where most variation is caused by bottom province, surface i
sedlment type, shape, outcrop type, and relief (Plate II). The South
Pacific conforms to global averages for top province and slope angle.

Much 1interpretation can be derived from the variation matrix, and
the potentially voluminous outpourings are beyond the scope of this

thesis. The matrix is offered as a tool for defining relationships.

Natural Slope Groups

The concept of natural groupirg 1s ambiguous. Ideally, an infinite
amount of representative data which are accurately weighted are analyzed
in a multidimensional fashion. For the present study, available data are

not weighted, and analyses are restricted to two or three dimensions.
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Consequently, the attempt at natural grouping for this study is far from
complete.

The basis for natural grouping is depliction of positive associa-
tions derived from Plate II. The method is to plot parameter-class
designations which exhibit significant positive associations and connect
the designations to all other designations which have common assocla-
tions. Single designations were plotted only once, and clustering was
obvious by arranging the position of the designation in its most ordered
position in relation to other designations.

Figure 12 shows a hypothetical grouping of slopes. Only parameters
1-6 and 8-10 (Tables II and III) were used because other parameters have
either incomplete or poor data sets. Plotted parameter classes have sim-
ultaneous occurrence of significant positive assoclations and pesitive
absolute associations. Two strengths of association were noted. The
stronger occurs when two or more parameter-class subpopulations share
greater than 50% of each others' stations reciprocally. This relation-
ship is the basis for the cores of each natural group (Figure 12). The
weaker relationship occurs when one subpopulation shares over half its
stations with another, but the sharing is not reciprocal. This relation-
ship 1is often caused by the disparity of the subpopulation sizes.

Four clusters of parameter classes are obvious on Figure 12.
Boundaries between the clusters take the form of single high population
parameter classes which overlap two clustered groups. Terrigenous
sediment is the overlap between Groups I and II, trench for groups II
and 1V, and no-top classification for Groups III and IV.

Approximate sizes assigned to the groups (Figure 12) were derlved

from frequencies of core parameter classes from the global distribution




FIGURE 12.

Natural slope groups for the strongest associations. Groups
are based upon clustering of strongest positive associa-

tions. Parameter class designations are weighted by size of
subpopulations and strength of association. Arrows indicate

direction of association. Four groups are indicated.
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(Tables I1 and III). Actual size of each group is unknown; however, 1t
can be assumed the minimum size of each group is at least half the aver-
age core frequency, as defined bv absolute assoclations. The actual
size should be significantly larger, depending upon the criteria used to
define variation among the groups.

Group I centers around the rise- broad shelf -passive divergent
core, and terrigenous surface sediment is dominant. Because all other
assoclations are directed toward the core populations, each parameter
class represents variation which i1s not necessarily true of the majority
of Group I stations. The majority of stations for sigmoidal smooth,
prograded sediment, truncated sediment, diapirs, Arctic, and Antarctic
are contained in each of the core subpopulations. Truncated sediments
are associated with the North Atlantic, whereas diapirs are most fre-~
quent in the South Atlantic. Stations with low slope angles are most
frequent for rise stations, and passive translation stations are prefer-
red for rise and broad shelf. The Arctic 1is best characterized by abrupt
smooth shape and prograded sediments, whereas the strongest traits of
the North Atlantic are broad chelves and passive divergent plate-
tectonic association.

Group II's core consists of fore-arc region-trench~deformed sedi-
mentary rocks-island. Terrigenous sediment dominates for all core
parameter classes except 1island. The core classes have slope-relief
indices in the high relief range. High relief is further supported by
the strong association of the greater than 4000 m stations to the core
parameter classes. Active transiation occurs as a variation in Group

I1.
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Group III centers around the intra-oceanic - ocean plateau cores

which are associated with the no-bottom classification. The intra-

oceanic subpopulation has dominance of greater than 50% carbonate sur-
face sediment, and most ocean plateaus are found in the Indian Ocean.

Group IV, the smallest group, clearly focuses on the outer trench
wall which has dominance of pelagic clay sediment, sigmoidal rough
shape, a no-top classification, a trench bottom, and a North Pacific
location.

The natural grouping was expanded by including the remaining posi-
tive relative associations from Plate II. Three types of association
are considered for the expanded grouping. The stronger two were used to
derive Figure 12. The third consists of all the weakest positive asso-
ciations which greatly outnumber the stronger ones. As with the first
grouping, all parameter-class designations were plotted with lines drawn
to represent association. Clustering for all associations is more com-
plex than the clustering shown on Figure 12. Consequently, tie lines
were generalized and arrows were omitted for depicting the grouping on
Figure 13.

Four similar groups are apparent on Figure 13, but the additional
parameter classes add a great deal of overlap. Parameter classes listed
in a group have associations with others in the same group or with any
of the overlap designations connected to the group by tie lines. Overlap
designations have associations with any of the parameter classes con-
nected to them by tle lines. Parameter-class designations listed in a
group have the greatest preference to that group, and overlap desipgna-

tions are preferred to any number of groups.




FIGURE 13. Natural slope groups for all positive associations. Groups

are baged upon all positive associations indicated on Plate

I1. Parameter class designations are weighted by strength
of association and size of subpopulations. Designations
listed within a group can have associations with others 1in
that group or with overlap designations tied to the group by
arrows. Overlap designations can have associations with

others in any group or overlap which connects with arrows.
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Although 1t 1s not obvious 1in Figure 13, the grouping scheme
exhibits clustered ranges for average slope angle, relief and outcrop
percent. Flgure 14 18 a plot of all mean slope and relief values for
subpopulations of parameter classes of each natural group. Designations
were weighted as to size of population and strength of association.
Clustering of values 1is obvious for the four groups and no overlap
values exist. Values of the strongest associations in each group were
extracted from Plate 1 and listed as ranges for average values for each

group on Table VII. Sequence of groups was established from the average

values. By increasing slope angle, sequence is Group I, Group IV, Group

II1 and Group II. By increasing velief, sequence is Group IV, Group I,

Group III, and Group II; and by increasing outcrop percent, it is Group

IV, Groups I/III, and Group II. Group II has consistently higher and

further removed values for all three parameters. The other groups have

more similar averages, but <clustering still separates them {into

distinctive groups. No obvious clustering was noted for parameter

classes which overlap natural groups.




FIGURE l4.
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Slope-relief means for natural groups. Aversge slope and
relief are for parameter class subpopulations which compose
each of the natural groups of Figure 13. Size of the symbol
indicates the strength of association and relative size of
populations involved. Largest symbols indicate populations
greater than 20X of the total. Smallest symbols fndicate
populations which are less than 9X or associations which are
weak. Groups are clustered on slope-relief axes with no
overlap. The clustering indicates that slope and relief
play a strong role in the natursl grouping. Average values
for "core” parameter classes are listed in Table VII. Also

listed are parameter class designations which correspond to

nunbers on Figure l4.
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TABLE vii, NATURAL GROUP MEANS
KEY TO PARAMETER CLASSES ON FIGURE 14, AND AVERAGE VALUES FOR SLOPE, RELIEF,
AND OUTCHUP 3 FOR NATURAL GROUPS
GROUP ) GROUP |11 GROUP 111 GROY® 1V
Parameter Ciass Parametor Class Parameter Class Parameter Class
1 Rise 1 Forearc 1 intra-oceanlic ! Pelaglc clay
2 Broad Shel!t 2 Def, Sed, Rk, 2 Ocean Plateau 2 Outer Trench
3 Passive Dlv, 3 Trench 3 No-Bottom Class wall
4 1=2° Slope 4 Islang 4 >50% Blogenic
5 >1000 m sed. 5 >4000 m Retief 5 Indlan
Thickness
6 Passive Trans, 6 High-Rel lef 6 Remnant Arc
Shapes
7 Diapir Qutcrop 7 Actlve Trans,
8 Antarctic 8 Sitt
9 Arctic 9 Narrow Shel t
10 Dlapir Bsm, 10 4-8* sliope
11 North Attantic 11 >3° slope
(minus Car ibbean)
12 400~1000 m Sed,
Thickness
Avg, Slope 2.7-2.9° 5¢3=5.4° 3.0-4,0° 2.9-3,6°
Avg. Relief 2.5~2.6 km 4,1-4,5 km 2,5-3,1 km 2.0 km

Avg, Outcropf 27-33% 50-64% 26~45% 18-27%
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EVALUATION OF CONICAL SLOPES

For this study, conical slopes are the sides of ocean features that
resemble circles or ellipses in map view and have a uwaximum top-of-slope
dimension of 1less than 100 ka. Approximately 257% of all large-scale
ocean slopes are conical slopes; however, they are poorly studied and
only a brief evaluation is offered in contrast to the extensive treat-
nent of lateral slopes. In order to establish continuity between the
two studies, discussion of conical slopes follows a similar outline as
that used for lateral slopes.

The morphology of conical slopes was evaluated for slope angle,
shape, and relief. Slope angles exceed 4° for nearly all conical
slopes, as determinei by mweasuring contour spacings of representative
seamounts from unpublished NAVOCEANO bathymetry at a scale of 1"=1°
longitude. Conical slopes are much steeper than lateral slopes, whir*
have an average slope of 3.8°. The steepness is reflected in the high
occurrence of abrupt type shapes as opposed to sigmoidal. Roughness was
not evaluated. Average relief for North Pacific and North Atlantic con-
ical slopes are 3412 m and 2901 m, respectively (Bracey, 198l). These
values are remarkably similar to lateral slope averages of 3427 m and
2956 m for the same ocean sections. Consequently, no obvious variation
was found for relief of conical slopes.

Definition of top and bottom provinces for conical slopes is fairly
simple. Top provinces are 1inalogcus to the no-top classification or the
island parametzr classes. Bottom provinces are either the no-bottom

classificat{on, trough, or rise.
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The scarcity of terrigenous input greatly influences sedimentation
on conical slopes. By definition, the top-of-slope boundary province
for conical slopes 1s extremely small and usually submerged so that
fluvial or glacial input is negligible. Hemipelagic materials may occur
on conical slopes, but sgedimentation rates are much lower than for
slopes with terrigenous sediment. Sediment is thin and mass movement of
sedimentary strata, particularly slumping, 1s present on a much dimin-
ished scale. Modification of sediments by currents dominates on conical
slopes, and effects are scouring of slope sediments and deposition of
base-of-slope sediment wedges characterized by dunes and current struc-
tures (Taylor and others, 1975). Erosional canyons are also less common
on conical slopes. Their absence can be attributed to lack of sediments;
however, slope gullies are ubiquitous.

Biogenic sediments are significant on conical slopes. Pelagic
carbonates are common to the carbonate compensation depth (CCD), and
pelagic Foraminifera and nannoplankton dominate. In warm waters, carbo-
nate reefs may grow in shallow depths on the tops of subsiding volcanoes
(Menard, 1964). The shallow water carbonates accumulate at the base of
the slopes, in erosional channels on slopes, or behind dam structures.
Shallow water spillover carbonates are not common on intra-slope areas
(Moore and others, 1976). For very thick carbonate caps, reef material
forms the basement of the slope for depths less than 1400 m (Menard,
1964).

In the absence of carbonate sediments due to depth below the CCD or
geography, various other types «f sediment are possible. Biogenlic silica
may be significant on lower slopes in equatorial regions (radioclaria),

or in high latitudes (diatoms) (Lisitzim, 1972). Amounts of hemipelagic
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sediments are determined by proximity to terrigenous sources or cur-
rents. If hemipelagic and biogenic sediments are absent, then sedimen-
tation is likely to be extremely slow or absent, and red clay sediments
may be present as thin patchy accunulations.

For the most part, sediment Is very thin on conical slopes. Rarely
should thickness approach the 200 @ outcrop depth used for lateral slope
characterization. Ponded or current modified sediments might reach up to
600 m (Taylor and others, 1975) on the lower flanks or behind dams, but
such occurrences are not the rule. In most cases, conlical slopes exhibit

basaltic basement outcrop for the top 200 m of shallow structure.
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CCNCLUSIONS

Interpretation of Natural Groups

Conclusions are based upon natural slope groups for lateral slopes
(Figure 13) and analogous information concerning conical slopes.

Group I slopes are continental slopes of passive rifted margins.
They have broad shelves, rises, terrigenous surface sediments and com-
plex sedimentary structure. Morphology 1s characterized by smooth
shapes, a low average relief range (2.5-2.6 km), and the lowest average
slope range of any natural group (2.7-2.9°). Most outcrops in the upper
200 m are sedimentary, and an average range of 27-37% of the slope has
outcrops. Group I slopes are dominant in the North Atlantic (excluding
the Caribbean), the Arctic, and the Antarctic Ocean sections. Only
Group 1I1 slopes have ocean section preference as strong as those cf
Group I.

Group II slopes include the remaining continental slopes and {sland
arc slopes. The only major 1link to Group I slopes is the presence of
terrigenous surface sediments. Morphologically, the slopes have the
highest averages for slope angle (5.3-5.4°) and relief (4.1-4.5 km).
These extreme values are linked to plate tectonic association. Subduc-
tion related slopes have highest relief, whereas translatfon related
slopes have comparable slope angles but lower average relief (3.1 km).
The tops of slopes are islands and narrow shelves, and bottoms are
trenches. Outcrop types are deformed sediments/sedimentary rocks and
pilnnacles of oceanic basement. Outcrop percent 1s the highest of all
groups at 50-64%Z. Shapes generally exhibit greatest roughness of all

groups, and a variety of forms are possible.
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Group I1II1 slopes are intra-oceanic and lack terrigenous sediments.
Surface sediments are >50% carbonate, and outcrop type is predominantly
oceanic basement. Sediment {s thinner than that of Group I slopes. How-
ever, despite thin sediments, outcrop percent is low (18-27%). Group III
slopes are dominant for the Indfan Ocean, and they are also common in
the Caribbean and South Pacific. They have many similarities to Group I
slopes. Relief values are similar (2.5-3.1 km) and slope angles are
slightly higher for Group III slopes (3.0-4.0°). The steeper slopes are
reflected in the higher occurrence of abrupt type shapes; however,
slopes are as smooth as those of Group I. Reefs are present on both
Group 111 and Group I slopes and they are not likely for other groups.

Group IV includes a small percent of all slopes. The slopes are a
significant exception to those associated with active plate~tectonic
association of Group II. Group TV slopes are outer trench walls which
have a low average relief (2.0 km), a moderate slope angle range (2.9-
3.6°), a low average outcrop-percent range (18-27%), acoustic basement
for outcrop type, sigmoidal rough shape, and pelagic clay surface
sediment.

Relationships among parameters are apparent in the natural group-
ing. Top province, bottom province, and plate-tectonic associlation have
the strongest affinity for each other, and grouping is biased for these
parameters. Surface sediment type clusters best with ocean sections
(Plate II), and it contributes to grouping in ways different from the
other three parameters. Although cutcrop type best infers plate-tectonic
assoclation (Plate 1I), it 1s ambiguous in the natural grouping. Shapes
cluster poorly with all parameters and have little influence in the

grouping. Similarly, slope angle and relief have little influence in
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forming natural groups, but the results show outstanding clustering of
mean values for parameters composing the groups (Figure 14).

Conical slopes resemble Group III slopes for top province, bottom
province, plate-tectonic association, surface-sediment type, outcrop

type and shapes. Both conical slopes and Group III slopes are oceanic

features, and they lack terrigenous sediment sources. The major dif-

ference is that conical slopes are steeper.
Methods for Characterizing Specific Aspects of Slopes

The natural slope grouping 1is necessarily general, and it may be
irrelevant to specific needs for slope classi{fication. Consequently,
methods were developed to characterize and classify specific aspects of
slopes. These methods were drawn from the various data and the data
base.

Plate I {s a useful tool for generating classifications based upon ”
two parameters. Matrices are illustrated for all combinations of two |
parameters and corresponding parameter classes. A global classification
can be formed by noting all high frequency combinations and disregarding
the less frequent ones. For example, 80% of all lateral slopes can be
characterized by the following parameter-class combinations for top and !

bottom province:

Broad shelf-Rise (23%) No Top Class.-No Bottom Class (7%)
Ocean plateau-No Bottom Class. Island-No Bottom Class (6%)
Narrow shelf-Rise (BX%) Narrow shelf-No Bottom Class (6%)

Island-Trench (8%) Narrow shelf-Trench (6%)
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Sixty percent of the possible combinations are eliminated because they
are not frequent. To apply this classification to global occurrence,
one can use the data base to spec:fy locations of the selected groups,
and maps can be compiled to show the distribution of the classification
scheme.

Another method was formulated to compare and characterize aubpopu-
lations of stations. Plate II shcws relationships among parameters and
parameter classes, and natural groups were based upon these relation-
ships. As revealed in the analysis section, the matrix enables the
formation of a detailed characterization of each parameter class sub-
population. Comparisons were made to the global distribution of slopes.

The methods used for the varlation matrix and natural grouping can
be used with the data base in expanded analyses. For example, geogra-
phic areas can be specified as subpopulations, and their data distribu-
tions can be retrieved from the data base. The resulting subpopulations
can be incorporated into the varlation matrix, and they can be charac-
terized by other parameters in relation to the global distribution. An

alternative 1s to establish other mean population distributions and

construct a variation matrix based upon them.
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APPENDIX 1

Bibliographies

Two bibliographies are offered. First is a bibliography for general
slope topics which are not directed toward specific geographic areas.
The second bibliography presents slope studies that deal with specific

locations. Fourteen ocean quadrants are outlined on an index map, and a

separate bibliography corresponds to each quadrant.
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APPENDIX II

Line Drawings of Seismic and Bathymetric Profiles

Profiles are ad justed to uniform scale with a vertical exaggeration
of 10:1. Traces of the sediment-water interface and selected horizons
were digitized from published studies. A digitized data base for the
profiles was formed. Results are the profiles of this appendix. Sources
for profiles are given at the end of the appendix. Order of profiles

corresponds to the index map (Map IV).




Scale for Slope Profiles
Key for Slope Profiles
Profiles*
Indian
West Pacific
East Pacific
West Atlantic
East Atlantic
Mediterranean
Arctic
Antarctic

Profile Sources

*See Map IV for locations.
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Key to Slope Profiles
——  Ses Lovel

= Water-Sediment Interface (Ses Bottom)

’ wme=  Diagramatic interpretation of seismic structures (Note: The position of the lines do not
necessarily represent actual seismic structure except for deepest reflector)
oo,

<", Actual seismic structure interpreted to be diapiric salt or shale.

"‘h Actual seismic structure interpreted to be reef material.

1 —— Actual seismic reflection planss interpreted to be time boundaries between sedimentary units.

Abbreviated age levels are:

| Q CQuaternary (end of) Ps Paleocene (Note: Age abbrevistion labels
‘ T Tertiary (end of) K Cretaceous f,',’,‘,‘,’,”,:’,‘,‘,,}";:,‘{:d°{,,’,':;'2:“""
N Neogene Ku Upper Cretaceous  Teflection planes.)
Pt Pleistocene Ki Lower Cretaceous
P Pliocene Mz Mesozoic
M Miocene P2 Paleozoic
E Eocene A A Horizon

0 Oligocene
Where two labels are hyphenated (i.e. M-E), the time boundary dates between the two ages.
==e= Acoustic Basement- despest actual acoustic reflector interpreted to be acoustic basemen?

e=eem Crystalline basement- Acoustic reflector interpreted to be either oceanic
or continental crystalline material

191 Interval velocity in km/sec.

Average acoustic vu‘ocity (km/sec) for a designated unit.
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I1. ANTARCTIC

1-3
4-11
12
13-14
15

\ 16

' 17-18
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\IUIQNI—'

I

IV. EAST ATLANTIC

1-6
7-8
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11
12-16
17
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PROFILE SOURCES

Source

Renard and Mascle (1974)
Johnson (1975)

Johnson and others (1975)
Grant (1975)

Ostenso (1974)

Grantz and others (1975)

Anderson and others (1979)
Anonymous (1975)

Houtz ard others (1972)
Anderson and Markl (1972)
Houtz (1974)

Anderson and others (1979)
Houtz (1974)

Nairn and others (1975) p.101
Ryan and Cita (1978)

Bi ju-Duval and others (1974)
Maldanado and Stanley (1979)

Talwani and Eldholm (1974)
Roberts (1974)

Baily (1975)

Roberts (1974)

Baily (1975)

Roberts (1974)

Dingle and Scrutton (1979)
Blundell (1975)

Renard and Mascle (1974)
Montadert and others (1974)
Renard and Mascle (1974)
Montadert and others (1974)
Uchupi and others (1976)
Seibold and Minz (1974)
Uchupi and others (1976)
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Profile # Source
47 Seibold and Minz (1974)
48 Uchupi and others (1976)
49 Seibold and Minz (1974)
50-52 Uchupi and others (1976)
53 Seibold and Minz (1974)
54 Uchupi and others (1976)
55 Seibold and Minz (1974)
' 56 ’ Uchupi and others (1976)
K 57 Seibold and Minz (1974)
58-60 Uchupi and others (1976)
61-63 Emery and others (1975a)
64~48 Schlee and others (1974)
69 Delteil and others (1974)
; 70~-71 Schlee and others (1974)
; 72 Delteil and others (1974)
; 73 Emery and others (1975a)
: 74 Delteil and others (1974)
‘ 75 Renard and others (1974)
76 Delteil and others (1974)
; 77 Emery and others (1975a)
: 78 Mascle and others (1974)
: , 79 Renard and Mascle (1974)
' 80-84 Emery and others (1975a)
85 Driver and others (1974)
86-88 Emery and others (1975a)
89 Renard and Mascle (1974)
90-92 Emery and others (1975a)
93 DuPlessis and others (1972)
94 Renard and Mascle (1974)
95 Emery and others (1975)
96-100 puPlessis and others (1972)
101-103 Emery and others (1975)
104-110 Emery and others (1975a)
111 Uchupi and others (1975)
112 Lowrie and others (1978)
V. WEST ATLANTIC
1 Talwani (1974)
2-5 Featherstone and others (1977)
6-8 Talwani (1974)
9-10 Keen and Keen (1974)
11 Talwani (1974)
12 Keen and Keen (1974)
13 Watts and Steckler (1979)
14 Jansa and Wade (1975)
15-16 Austin and others (1980)
17-20 Schlee and others (1979)
21 Wwatts and Steckler (1979)
22-29 Schlee and others (1979)
30-31 Sheridan and others (1979)
32-35 Talwani (1974)




36

37

38

39

40

41

42

43

44
45-46
47-54
55-56
57-59
60

61
62-63
64-67
68-71
72-83
84-86
87-90
91
92-93
94

95

96
97-98
99-102
103-105
106
107
108

VI. EAST PACIFIC

1-7

8
Ba-14
15-16
17
18-22
23
24-25
26

27
28-32
33-3¢6
37-44
45-47
48-61
62

63

Profile #
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Source

Fink (1972)

Talwani (1974)

Fink (1972)

Peter and Westbrook (1976)
Talwani (1974)

Ladd and others (1977)

No profile

Silver and others (1975)
Case (1974)

Silver and others (1975)
Case (1974)

Talwani (1974)

Dillon and Vedder (1973)
Worzel and Burk (1979)
Carrison and Martin (1973)
Worzel and Burk (1979)

Garrison and Martin (1973) :
Milliman (1979)

Fainstein and Milliman (1979)
Leyden and others (1976)
Milliman (1978)

Lonardi and Ewing (1971)
Barker (1972)

Ludwig and others (1979a)
Barker (1972)

Ludwig and others (1979a)
Barker (1972)

Ludwig and others (1979%a)
Heezen and Johnson (1965) q
Johnson and others (1977) ;
Tucholke and Mountain (1979)
Taylor and others (1975)

Rabinowitz and Cooper (1977)
Sychev and Snegovsky (1976)
Scholl and others (1968)
Buffington (1973)

Sychev and Snegovsky (1976)
Grow (1973)

No profile

Von Heune (197%a)

Seely (1979)

Seely (1977)

Von Heune and others (1979)
Chase and others (1975)
Barnard (1979)

Kulm and Fowler (1974)
Silver (1971)

Curray (1965)

Blake and others (1978)
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Profile #

64
65-66
67-72
73
74-~80
81-83
84

85
86-88
89-104
105
106
107
108-113

WEST PACIFIC

1
2-6

7-8

9
9-14
15

16
17-18
19-21
22-27
28-31
32-34
35

36

37

38

39
40-41
42

43
44-46
47-49
50
51-58
59
60-62
63
64-91
92

93
94-95
96

97

98
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Source

Blake and others (1978)
Curray (1965)

Moore (1972)

Blake and others (1978)
Moore (1973)

Karig and others (1978)
Karig (1977)

Seely (1979)

No profiles

Kulm and others (1977)
Scholl and others (1977)
Kulm and others (1977)
No profile

Herron and others (1977)

Buffington (1973)

Unpub. LDGO data, R/V ROBERT
CONRAD 14

Minayev and Suvorov (1974)

Scientific Party (1980)

Ludwig and others (1966)

Moore and others (1976)

Hilde and others (1969)

Jacobi and Mrozowski (1979)

Sychev and Snegovsky (1976)

Ludwig and others (1975)

Herman and others (1979)

Bowin and others (1978)

Karig (1973)

Bowin and others (1978)

Karig (1973)

Bowin and others (1978)

Karig (1973)

Emery and Ben-Avraham (1972)

Karig (1973)

Emery and Ben-Avraham (1972)

Karig (1973)

Emery and Ben-Avraham (1972)

Bowin and others (1978)

Emery and Ben-Avraham (1972)

Parke and others (1971)

Emery and Ben-Avraham (1972)

Mizano and others (1979)

Fisher (1974)

Karig and Mammerickz (1972)

Fisher (1974)

Luyendyk and others (1974)

Figher (1974)

Luyendyk and others (1974)

Karig and Mammerickz (1972)
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99
100-101
102
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104~110
111

112
113-115
116-117
118-127
128
129-131
132-139
140

141

142
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Source

Luyendyk and others (1974)
Karig and Mammerickz (1972)
Fisher (1974)

Karig and Mammerickz (1972)
Lonsdale (1975)

Hawkins (1974)

Fisher (1974)

Hawkins (1974)

Katz (1974)

Houtz and others (1967)
Bentz (1974)

Andrews and Eade (1973)
Silver and Moore (1978)

Rea and Naugler (1971)
Greene and others (1978)
Davies and othere (1972)

Anonymous (1975)

Emery and others (1975)
Kolla and others (1980)
Dingle and others (1978)
Anonymous (1975)

Bunce and others (1967)
Anonymous (1975)

Ross and Schlee (1973)
White and Klitgord (1976)
Anonymous (1975)
Harbinger and Bassinger (1973)
Anonymous (1975)
Anonymous (1975)

Bunce and others (1967)
Anonymous (1975)

Houtz and others (1977)
Anonymous (1975)

No profile

Anonymous (1975)

Curray and others (1979)
Anonymous (1975)

Curray and others (1979
Anonymous (1975)

Karig (1977)

Anonymous (1975)

Jacobson and others (1979)
Anonymous (1975)
Anonymous (1975)

Veevers (1974)

No profile

Talwani and othes (1979)
Anonymous (1975)

Talwani and others (1979)




Profile #

97

98

99
100
101-105

Source

Boeuf and Doust (1975)
Talwani and others (1979)
Boeuf and Doust (1975)
Houtz and Markl (1972)
Boeuf and Doust (1975)
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= o =]
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EE E Ex
5 33 32 23
E x FlS 2 B e £ ;
g‘égi gé'ggggg J
8SZ8|E 288225 Key i
| E Frequency of subpopulation exceeds 150%
IHH = of frequency for total lateral slope population.
= i Frequency of subpopulation is 50—150% 3
[l = of frequency for total iateral siope population. ;
e E==] Frequency of subpopulation is less than 50% §
L L of frequency for total lateral slope population. '
— =]
No comparison made.
[HE =
X 50% of subpopulation (indicated by parameter
classes in column A) coincides with subpopulation
indicated by parameter classes in column B.
i
4
(O  No stations exhibit parameter class designations.
Note: The first three key designations indicate relative comparisons of subpopulations
to the total lateral slope population. The final two designations are absolute
I and specify strongest or weakest associations between parameter class tapics. ]
4
' No value given where only profile stations were used. !
o | ? Characterization of average siope and relief values in relation to average values for all
lateral siopes. N—normal slope relief values, LS— low slope values, HS- high slope ;
values, LR— low refief values, HR- high relief values. j
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Note: The first three key designations indicate refative comparisons of subpopulations
to t.é to!al lateral slope population. The final two designations are absolute
= and specify strongest or weakest associations between parameter class topics.
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m ' No value given where only profile stations were used.

[l

? Characterization of average slope and relief values in relation to average values for all
lateral slopes. N-normal slope relief values, LS— low slope values, HS~ high slope
values, LR— few relief values, HR~ high relief values.
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¥ Average slope value for a subpopulation minus the average value
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t
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|
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il for the total lateral slope population {3.035KM).
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il 5 Average outcrop percent for a subpopulation minus the average value
I for the total lateral slope population (38%).
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/ 30-50% carbonate
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Pelagic clay
S Indicates biogenic silica comprises
N 1500 greater than 10% of the sediment.
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